Sufficient dimension reduction and prediction in regression.

نویسندگان

  • Kofi P Adragni
  • R Dennis Cook
چکیده

Dimension reduction for regression is a prominent issue today because technological advances now allow scientists to routinely formulate regressions in which the number of predictors is considerably larger than in the past. While several methods have been proposed to deal with such regressions, principal components (PCs) still seem to be the most widely used across the applied sciences. We give a broad overview of ideas underlying a particular class of methods for dimension reduction that includes PCs, along with an introduction to the corresponding methodology. New methods are proposed for prediction in regressions with many predictors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on shrinkage sliced inverse regression

We employ Lasso shrinkage within the context of sufficient dimension reduction to obtain a shrinkage sliced inverse regression estimator, which provides easier interpretations and better prediction accuracy without assuming a parametric model. The shrinkage sliced inverse regression approach can be employed for both single-index and multiple-index models. Simulation studies suggest that the new...

متن کامل

Testing Predictor Contributions in Sufficient Dimension Reduction

We develop tests of the hypothesis of no effect for selected predictors in regression, without assuming a model for the conditional distribution of the response given the predictors. Predictor effects need not be limited to the mean function and smoothing is not required. The general approach is based on sufficient dimension reduction, the idea being to replace the predictor vector with a lower...

متن کامل

Enhancing Efficiency of Neural Network Model in Prediction of Firms Financial Crisis Using Input Space Dimension Reduction Techniques

The main focus in this study is on data pre-processing, reduction in number of inputs or input space size reduction the purpose of which is the justified generalization of data set in smaller dimensions without losing the most significant data. In case the input space is large, the most important input variables can be identified from which insignificant variables are eliminated, or a variable ...

متن کامل

Dimension-Reduction in Binary Response Regression

The idea of dimension-reduction without loss of information can be quite helpful for guiding the construction of summary plots in regression without requiring a pre-specified model. Focusing on the central subspace, we investigate such “sufficient” dimension-reduction in regressions with a binary response. Three existing methods, SIR and pHd and SAVE, and one new method DOC are studied for thei...

متن کامل

Sufficient Dimension Reduction Summaries

Observational studies assessing causal or non-causal relationships between an explanatory measure and an outcome can be complicated by hosts of confounding measures. Large numbers of confounders can lead to several biases in conventional regression based estimation. Inference is more easily conducted if we reduce the number of confounders to a more manageable number. We discuss use of sufficien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 367 1906  شماره 

صفحات  -

تاریخ انتشار 2009